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Abstract

Can we align the embeddings of one text encoder with those of another text encoder? If so, how
simple is this mapping (e.g., is it linear)? Following indications from prior work, we hypothesize
that this kind of transformation is possible and relatively simple. In this work, we argue that such
mapping is powerful and possesses many interesting applications, demonstrating that unimodal
text encoders can be transformed into multimodal, and transferring embedding inversion attacks to
any text encoder.1

1 Introduction

Deep Learning encoders for transforming different data types (e.g., text passages) to meaningful vec-
tors [16, 19], have become a powerful machine-learning tool, applied in many downstream tasks [11].
Such encoders can work across various modalities, such as text and images [17] or have different
specialties, e.g., medical text encoders [18].

In this work, we focus on encoder pairs, one possessing a certain property that the other lacks, and
try to map the embeddings created by the latter onto the former’s embedding space. We refer to this
process as aligning the two embedding spaces, which was previously shown feasible in the context
of multilingual text encoders [21], or text-image multimodal encoders [20], under different settings
than ours (see §2). Specifically, as illustrated in Fig. 1, we propose an efficient and light training for an
aligner, which is in charge of mapping one embedding space to another, while keeping both encoders
frozen.
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to align Source with Target 
embeddings (Eq. 1)
(Source and Target remain frozen)
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Eq. 1: arg𝑚𝑎𝑥𝑊𝑎𝑙𝑖𝑔𝑛
𝐸𝑡~𝑇𝑒𝑥𝑡𝑠 𝐸𝑚𝑏𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) −𝑊𝑎𝑙𝑖𝑔𝑛 ⋅ 𝐸𝑚𝑏𝑠𝑜𝑢𝑟𝑐𝑒 𝑡
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Figure 1: We aim to find
a simple mapping (e.g.,
affine) that aligns the em-
beddings of a source text
encoder model with the tar-
get text encoder embed-
dings. For example, here
we visualize (TSNE) map-
ping the embedding of E5
(source) onto CLIP text em-
bedding space (target) via
an affine mapping (aligner).

Through this method, we aim to explore the relation between embedding spaces; we demonstrate
both the quality of this mapping and its usefulness, by proposing and evaluating it for two applica-

1We make our code publicly available in: https://github.com/matanbt/align-text-encoders
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tions. In particular, we hypothesize that the better the performance of simple aligner mappings, the
more the pair of embedding spaces involved are similarly structured.

The first application attempts to add vision modality to unimodal text encoders (§4). This is done
by aligning the unimodal text encoder with CLIP’s text encoder [17]. Evaluating the aligned uni-
modal text encoders on different, standard zero-shot vision benchmarks, we find that a mere linear
transformation suffices to achieve >70% of the text-to-image retrieval performance attained by CLIP
(Tab. 1).

The second application attempts to generalize and transfer embedding inversion attack (Vec2Text;
[10]) to models unseen before (§5). Specifically, we align different text encoders with the text encoder
for which a Vec2Text inversion model already exists, then we demonstrate this model can reconstruct
text from the different, unseen before, embedding spaces.

In what follows, we first discuss prior work attempting to apply similar alignment on various
embedding spaces and with different goals (§2), next we present our method (§3), followed by its
employment for two applications: adding vision modality in unimodal text encoder (§4), and trans-
ferring a previous embedding inversion attack (§5). We wrap with a conclusion (§6).

2 Background and Related Work

Aligning a pair of embedding spaces was explored for several tasks, some of which we demonstrate
in this work (e.g., multimodal alignment). Yet, to the best of our knowledge, aligning a pair of text
encoders as part of our proposed applications—multimodal alignment and embedding inversion
transferability—was not previously researched.

Multimodal Alignments. Aligning image and text embedding spaces has been extensively re-
searched [27], with many possible methods of utilizing existing unimodal models to form a multi-
modal embedding space. Rosenfeld et al. 2022 [20] proposed a way to efficiently train multimodal
(image and text) encoders by freezing both unimodal (pretrained image and text) encoders, then
training a transformation (4-6 layer MLPs) on top of the pretrained text encoder, while fixing the im-
age encoder embedding (i.e., aligning the text-encoder with the image-encoder). This work closely
relates to our method and evaluation of this task (§4); however, we propose to perform it on frozen
text encoders— an unimodal text encoder with CLIP’s text encoder—thus we do not require multi-
modal pairs of data (only textual data). Additionally, prior work [27, 20] optimized contrastive loss,
while we examine a simple ℓ2 loss, evaluating the potential in a mere embedding space alignment.

Multilingual Alignments. Another area where aligning embedding spaces was found useful is
transforming monolingual text encoders into multilingual [8, 21]. Mikolov et al. 2014 [8] use frozen
monolingual text embedding pairs to learn a translation matrix that projects the embedding of a source
language to the target language’s. Similarly to our approach, they minimize the Mean Squared Error
of the projection by optimizing the linear aligner only.

Indications of a simple mapping. Murellu et al. 2023 [7] show it is possible to train a linear
projection that transforms the output of a frozen image encoder into an LM input (as a soft prompt),
resulting in the LM generating a caption to the image. This demonstrates a prior linear relationship
between the image encoder and the LM input embedding. Additionally, they show that the more
natural language the image encoder was exposed to during training, the more performant the map-
ping was. In our case, we seek to align two encoders of the same modality (text), which we expect
to be even simpler, due to their similar characteristics. Additionally, Murellu et al. suggest the cap-
tioning task as a proxy for measuring the similarity of the embedding spaces of the image encoder
and the LM input, similarly, we can view each task we propose (§4–5) as a measure of the involved
embedding spaces’ similarity.
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3 Method

We aim to map the embeddings of a source text-encoder model to the embeddings of the target text
encoder, as demonstrated in Fig. 1. We refer to such mapping, f , as an aligner (as it aligns the two
embedding spaces). Formally, our objective can be written as finding an aligner function:

arg min f Et∼Texts

[∥∥Embtarget (t)− f (Embsource (t))
∥∥2

2

]
(1)

that is, minimizing the distance between the target and source embedding spaces, by merely opti-
mizing an aligner function f on top of the source encoder. We choose ℓ2 norm as the distance measure
to align the embedding spaces, similarly to prior work in multilingual alignment [8, 21]. Notably, the
optimization is done w.r.t. a distribution of texts (denoted as Texts), e.g., the distribution of image
captions.

We reiterate that both text encoders are frozen throughout the optimization. Remarkably, optimiz-
ing towards this objective does not require taking gradients of the text encoders or any knowledge
of their weights, thus it can be done on closed-sourced models accessible via API (e.g., OpenAI’s
proprietary embedding models). This objective can be optimized on any given set of embedding
pairs.

Concretely, for optimization, we first cache a dataset of embedding pairs (i.e., each row in this
dataset is a text passage and its two corresponding embeddings in source and target models). Then,
we fit a function f (e.g., affine mapping) to minimize Eq. 1, using first-order optimization (e.g., Adam
[3]).

4 Adding Modality to Unimodal Text Encoders

To demonstrate the feasibility in alignment across text-encoder embedding spaces, as well as its ap-
plicative potential, we attempt to map unimodal text encoders (source) to the multimodal CLIP’s
text-encoder space (target) [17], as illustrated in Fig. 2. To assess the mapping success we evaluate the
aligned source encoder against several multimodal benchmarks of zero-shot image classification and
image retrieval.

Why is a successful alignment useful? Such alignment between multimodal text encoders to
unimodal, provides an efficient, light and low-effort method of transforming any text encoder to
multimodal, without modifying the models or curating a large image dataset. This can be useful
when an existing text encoder is required to be extended to simple vision tasks.

4.1 Experimental Setup

target Model. We aim models to align with the embedding space of CLIP’s text encoder [17], specif-
ically of clip-vit-large-patch142.

source Models. We train the aligner on top of the following unimodal text encoders: Glove [16],
MiniLM [25], E5 [24]. While Glove is a model for distributed word representation, the latter pro-
vide contextualized representations and are based on BERT [2], making their architecture—stack of
transformer encoder blocks—closer to CLIP’s.

Control source Models. To examine the importance of the source embedding, on which we train
the aligner, we form a dummy encoder model of deterministic random embeddings. We initially
sample a random embedding vector for each word; then, each time a sentence requires embedding,
we embed words using this randomly-initialized matrix, and perform mean pooling to provide the
output embedding.

2https://huggingface.co/openai/clip-vit-large-patch14
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Figure 2: Aligning a source unimodal text encoder with target CLIP’s text encoder, training solely an
affine mapping (aligner), and performing text-to-image retrieval. Shown here is a random sample
from MS-COCO retrieval evaluation.

Aligner f . We train the mapping f to optimize Eq. 1;3 for training samples (i.e., Texts distribution),
we take the 3.3M captions (annotation for images) of the Conceptual Captions dataset [22], similar to
[9, 7]. We focus on affine mapping for f , albeit training an MLP and a transformer encoder [23] for E5
encoder. Hyperparameters, including learning rate, were optimized w.r.t. the held-out validation set
of Conceptual Captions dataset, and optimization was done with Adam [3] on NVIDIA RTX A6000
GPU.

Evaluation Tasks. We evaluate the resulting multimodal text-encoder (source+aligner) for zero-shot
classification and zero-shot text-to-image retrieval, following common benchmarks also used in prior
work [17]. Image classification datasets include CIFAR10 and CIFAR100 [4], and ImageNet-1K [1];
Image retrieval datasets include Flickr8K and Flickr30K [26], and MSCOCO [6]. We follow a standard
implementation of this evaluation.4

4.2 Results

Tab. 1 shows results over the different models and benchmarks, with a qualitative example from the
linear alignment of E5 in Fig. 2.

Firstly, we see that a mere linear layer suffice to map the embedding of a text-encoder model, such
as E5, to CLIP’s encoder, achieving 45.9% Recall@5 on the challenging MSCOCO retrieval dataset,
compared to the 61.1% originally attained by CLIP. This shows that a linear alignment mapping suc-
cessfully distills a performant mapping onto CLIP’s embedding space. Additionally, this may indi-
cate a similar structure of CLIP and E5 embedding spaces, as other models attain inferior alignment.
When comparing E5’s architecture to Glove’s such a result is expected, as E5 architecture is more
similar to CLIP’s (transformer-based) than Glove’s.

Expectedly, we observe that the more expressive aligners (e.g., of transformer encoder layers as
aligner) outperform linear aligners, as demonstrated on E5 in Tab. 1.

3We note that related work [20, 27] optimized a contrastive objective for the alignment, however, in this work, we aim to
explore the strength of naive alignment between embedding spaces (as formulated in Eq. 1).

4https://github.com/LAION-AI/CLIP benchmark
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Finally, our evaluation of random deterministic embeddings, compared to any other aligned
model, demonstrates that while there is a certain, small extent of success rate that can be compressed
into the aligner (e.g., random embedding achieves 3.48% in ImageNet-1K, classifying over 1K labels),
the meaningless random embedding failed to achieve high success, as opposed to those of trained
text encoder. This indicates that the aligner utilizes the source embedding semantic structure, which
is similar to the one present in target embedding and absent in the random embeddings.

source Model Aligner f Classification (Accuracy@1) Retrieval, Text2Image (I-Recall@5)
CIFAR10 CIFAR100 ImageNet-1K MS-COCO Flickr30K Flickr8K

CLIP (Text) - 95.59% 75.81% 75.53% 61.16% 87.14% 86.32%

Random - 10.19% 1.63% 0.10% 0.10% 0.48% 0.40%
Random Linear 67.14% 15.96% 3.48% 3.34% 6.78% 17.34%

Glove - emb. dimensions misalignment (300 vs CLIP’s 768)
Glove Linear 92.32% 40.51% 19.74% 22.94% 40.80% 43.06%

MiniLM - emb. dimensions misalignment (384 vs CLIP’s 768)
MiniLM Linear 93.80% 44.64% 20.82% 34.91% 66.26% 64.68%

E5 - 11.28% 1.30% 0.12% 0.08% 0.42% 0.70%
E5 Linear 94.99% 60.06% 33.28% 45.91% 77.70% 76.00%
E5 MLP (3L) 95.19% 62.02% 24.74% 39.74% 71.60% 71.92%
E5 Transformer (4L) 95.51% 65.34% 38.73% 53.13% 83.20% 81.26%

Table 1: Evaluating different models on standard zero-shot classification and retrieval benchmark; f ,
where exists, was trained to align source with the embedding space of CLIP’s text encoder (target).

5 Inverting the Embedding of any Text Encoder

To once again demonstrate the feasibility of cross-embedding alignment, we utilize our method to
generalize a previous attack for inverting embedding to text, Vec2Text [10]. While such inversion was
proven feasible [10], it requires extensive effort and computation for training the generative model
that performs the inversion. In this section, we aim to reuse an already-trained inversion, by mapping
other encoders to the invertible embedding space. Concretely, as the original work of Vec2Text is
trained to invert GTR-T5 embeddings, we map different text encoders (source) onto GTR-T5 embed-
ding space (target), then utilize this mapping to perform inversion of these text encoders.

Why is a successful alignment useful? Training an aligner results is a more efficient process,
compared to the extensive training required for Vec2Text’s inversion model. This alignment can be
seen as transferring of attacks [14]; we transfer an inversion attack on GTR-T5 to any other text encoder,
using our alignment method. Notably, our alignment method is black-box—it does not require the
model weights or gradients—and as such can be applied on closed-sourced proprietary embedding
models (e.g., OpenAI’s).

5.1 Experimental Setup

Vec2Text Method. Morris et al. 2023 [10] showed it is possible to invert an embedding of text en-
coder (e.g., GTR-T5’s) into the text it encodes, as exemplified in Fig. 3. This method, called Vec2Text,
uses a generative model to invert the embedding vector, utilizing an iterative process that refines the
inverted text.5 The training process of this generative model for this task is lengthy and computa-
tionally expensive; thus, expanding this method to new models requires an extensive effort. In what
follows we attempt to mitigate this by mapping different embedding spaces to an embedding space
for which a Vec2Text inversion model already exists.

5https://github.com/jxmorris12/vec2text

5

https://github.com/jxmorris12/vec2text


E5 
Text Encoder

Aligner 

GTR-T5
Text Encoder

E5
Text Encoder

Vec2Text
GTR-T5 Inverter

Vec2Text
GTR-T5 Inverter

Vec2Text
GTR-T5 Inverter

Original Text: Chinese lunar coins In 1981, China began minting 

coins to commemorate the Chinese New Year. 

Inverted: Chinese lunar coins 

In 1981, China began minting 

coins to commemorate the 

Chinese New Year.

In
ve

rs
io

n
 M

e
th

o
d

Inverted: ‘Lake that tried to beat 

it all, but failed to win.’ Source: 

mtc.com Hurricane and Kennedy 

Search Programs New twelve

Inverted: Chinese lunar coins 

began to be minted in 1982. 

Chinese lunar coins are a series 

of coins to commemorate the 

Chinese New Year.

Figure 3: Aligning a source (E5) text encoder with target (GTR-T5) text encoder,via training solely an
affine mapping (aligner), and re-using Vec2Text inversion (originally trained for GTR-T5) to invert
source’s embedding.

target Model. We aim models to align with the embedding space of GTR-T5’s text encoder [12], per
the available inversion model for Vec2Text [10].

source Models. We attempt to invert the embedding created by E5 model [24], on which we train the
aligner. We also consider the random embedding baseline, introduced in §4.

Aligner f . We train the mapping f to optimize Eq. 1; for training samples (i.e., Texts distribution),
we take the 5.33M passages of the Natural Questions corpus [5], also used to train the inversion
method in Vec2Text [10]. Optimization was done with Adam [3], on NVIDIA RTX A6000 GPU.

Metrics for Inversion. Following Morris et al. 2023 [10] evaluation of Vec2Text, we measure the suc-
cess of the inversion by comparing the original text used to create the embedding with the one gener-
ated through the inversion on the held-out validation set of NQ corpus passages, using: Cosine Sim.
(similarity of an independent text encoder [13], between true and reconstructed text); BLEU (a mea-
sure of n-gram similarities between the true and reconstructed text [15]); Token-F1 (the multi-class F1
score between the set of predicted tokens and the set of true tokens); Exact-match (the percentage of
reconstructed outputs that perfectly match the ground-truth).

5.2 Results

Results are shown in Tab. 2, with a qualitative sample of inverting E5 embedding in Fig. 3
Firstly, we observe that it is possible to recover almost a third of the original words (Token-

Precision, accounted for in Token-F1) from E5 embedding, using the aligned E5 with GTR-T5’s Vec2Text;
compared to inversion random embedding (Random), or an unaligned model (E5), which leads to the
generation of generic, unrelated passages, this is a non-trivial improvement.

We note that, similar to §4, the performance gap between the aligned random embedding and E5’s
suggests that the structure of E5’s embedding space is utilized, and may indicate its resemblance to
the target embedding space of GTR-T5.

Still, when Vec2Text inverts the originally-trained model (in our case, GTR-T5), it often achieves
exact reconstruction (Exact-Match), while our method fails to provide such high-quality reconstruc-
tion. Instead, quantitative measures suggest our method successfully recovers a portion of the key-
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source Model Aligner f Cos. Sim. BLEU Token F1 Exact Match

GTR-T5 - 0.98600 78.62934 92.489% 20.6%

Random - 0.41771 1.86178 12.665% 0%
Random Linear 0.51891 3.09530 22.939% 0%

E5 - 0.46163 1.61304 9.874% 0%
E5 Linear 0.77026 4.55204 29.316% 0%
E5 Transformer (4L) 0.80073 5.67677 33.566% 0%

Table 2: Evaluating the success of embedding inversion with Vec2Text, originally trained for invert
GTR-T5. f , where exists, was trained to align the source embedding with GTR-T5’s.

words (Token-F1, BLEU) and the semantic concept (Cos. Sim.) of the original passage. A qualitative
examination of inversions of the aligned E5 model (e.g., Fig. 3) reaffirms these findings, presenting a
successful reconstruction of important keywords, and successfully recovering the original passage’s
main concept.

These results show we can utilize Vec2Text to recover the main ideas of any text encoder with the
relatively negligible cost of training of an affine layer (aligner).

6 Conclusion

Our study demonstrates that simple mappings can effectively align text encoder embeddings, al-
lowing for approximate performance matching and attack transfer. This straightforward approach
achieved over 70% of CLIP’s text-to-image retrieval performance and enabled the transfer of em-
bedding inversion attacks to new models. We hypothesize these findings suggest a fundamental
similarity in embedding space structures across different encoders, which future work may explore
in depth.
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